
Journal of Statistical Physics, Vol. 37, ?Cos. 5/6, 1984 

Stochastic Analysis of Symmetry-Breaking Bifurcations: 
Master Equation Approach 
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The multivariate master equation for a general reaction-diffusion system is 
solved perturbatively, in the vicinity of a bifurcation point leading to symmetry- 
breaking transitions. The possibility to express the result through a Brazovskii 
type of potential is examined, and a comparison with the Langevin analysis of 
Walgraefet al. [Adv. Chem. Phys. 49:311 (1982)] is performed. 
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1. INTRODUCTION 

The stochastic description of nonlinear nonequilibrium systems in the 
vicinity of bifurcation points of new branches of solutions has been 
investigated extensively in the last years.t1'2) For reaction-diffusion systems, 
the transition from one homogeneous steady state to a bistable situation 
arising through a cusp bifurcation has been completely elucidated, using both 
master equation (3) and Langevin equation ~4) approaches, combined with 
renormalization group techniques. In particular, it has been shown that the 
stationary distribution of inhomogeneous fluctuations is given by the 
exponential of a Landau-Ginzburg type of functional familiar from 
equilibrium phase transitions. 

The problem of symmetry-breaking bifurcations beyond mean-field 
theory is considerably more involved. Important progress has been achieved 
by Swift and Hohenberg(S) for the B~nard instability and by 
Walgraefetal.  ~6) for chemical instabilities in infinitely extended systems, 
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using a Langevin equation approach. Specifically, Walgraef et al. show that 
in bifurcations leading to steady state patterns, the stationary probability 
distribution is determined by a functional known as the Brazovskii 
potential. (7) This latter quantity differs from the Landau-Ginzburg 
functional in that it displays an additional quadratic term associated to the 
deviation of the wavelength from its critical value at the bifurcation point. 

In infinite extended reaction-diffusion systems of two or more space 
dimensions, traditional bifurcation analysis reveals the possibility of 
transcritical branches associated with hysteresis and coexistence of a stable 
uniform state and a stable spatial pattern (Fig. la). In the probabilistic 

- " ( 6 )  analysis this shows up as the analog of a first-order transition. Contrary to 
its second-order counterpart, which occurs in a small vicinity of the bifur- 

AmpUfude of xr~ 

~ "  ~ . ~ , , . ~ _  _ _ 

3, c 

AmpLitude of Rro. 

Fig. 1. (a) Bifurcation diagram exhibiting supercritical ()~ > ;~c) as well as subcritical 
(~ < 2c) branches. Full and dotted lines denote, respectively, stable and unstable solutions. 
The coalescence of the two subcritical branches takes place at a limit point which is generally 
distinct from ~'c as long as the other control parameters are different from critical values/%. 
(b) Degenerate situation (coalescence of bifurcation point and limit point) arising when 
/1 : / t  c , 
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cation point, such a first-order transition is generally a global phenomenon, 
as the distance between the two simultaneously stable branches is not 
controlled by the bifurcation parameter. 

Our aim in the present paper is twofold. First, we would like to 
investigate the status of the Brazovskii potential from the standpoint of the 
master equation approach. As is well known, in this approach, one incor- 
porates at the starting point a great deal of physical information, such as the 
fact that chemical reactions define a birth and death process and that 
diffusion defines a random walk. Subsequently one tries to see whether, in 
some asymptotic sense, part of this information becomes "irrelevant" and 
one is reduced to a familiar problem of critical phenomena belonging to one 
or the other "universality class." 

Our second objective relates to the global character of a first-order tran- 
sition. When the phenomenon is controlled entirely by the bifurcation 
parameter 2 (like in a second-order transition) one can set up a perturbative 
expansion of the master equation, ~3) and determine the conditions under 
which the initial stochastic process is reduced to a diffusion process 
amenable to a Langevin equation subjected to additive Gaussian white noise. 
But when the distance between states is finite the above perturbation method 
is no longer legitimate. One can of course always extrapolate it on the basis 
of phenomenological arguments, but it is quite possible that in this way 
consistency is not guaranteed. We believe that the way out of this difficulty 
is to transform the global problem to a local one, by displaying a second 
control parameter /~ built into the system. This parameter should vary in 
such a way that when 2 ~ 2 c,/2 should tend to a value/2c (hereafter taken to 
be zero), such that the limit point tends to the bifurcation point (Fig. lb). 
Such a problem would thus remain tractable within the realm of a pertur- 
bative approach. 

In Section 2 we write the multivariate master equation for a general 
reaction-diffusion system and seek solutions displaying the exponential of a 
stochastic potential U. This leads us, to the dominant order in the size of the 
system, to a multivariate Hamilton-Jacobi equation. ~8'9) From this we 
deduce a set of equations for the successive derivatives (up to the fourth) of 
the stochastic potential with respect to the state variables. 

In Section 3 we express the stochastic potential in the representation 
provided by the eigenfunctions of an operator related to the linearized 
operator of the phenomenological mass balance equations and estimate the 
orders of magnitude of the different terms present. Section 4 is devoted to the 
solution of the equations of the successive derivatives of U in this represen- 
tation and to the comparison of the result to the Brazovskii potential. In 
Section 5 we illustrate the general expressions on the Brusselator model, ~) 
and compare with the work by Walgraefetal.  ~6) In the final section we 
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discuss the interest of the method and suggest some problems for future 
investigations. 

Throughout the paper we insist on the general procedure and on the 
qualitative aspects of the problem. (Technical details are to be found in 
Ref. 11.) 

2. THE MULTIVARIATE HAMILTON-JACOBI  EQUATION FOR A REAC- 
T ION-D IFFUSION SYSTEM 

Let {X~} be a set of ~ chemically active constituents in a volume V in a 
d-dimensional space. This space is divided into n submacroscopic cells. The 
numbers of cells along each axis are denoted by n 1, n2,..., na such that n 1 • 
n 2 • . . .  • n d = n. A vector r = (r 1, r 2,..., re) with integer components locates 
a given cell. 

The number of particles of species a in cell r will be denoted Xr~. The 
kinetic characteristics of the chemical reactions are the following: 

vo~, order of the pth reaction with respect to X~ ; 
vo~, stoichiometric coefficient of X~ in the pth reaction (vo, > 0 for particles 
formed as a result of the reaction and vo,  < 0 for particles disappearing as a 
result of the reaction); 
kp, kinetic constant of the pth reaction expressed in (second) -~ .  
(liter)Z~o~- 1 units. 

These constants may include externally controlled concentrations. 
Each constituent X~ may diffuse between two adjacent cells with a 

jump frequency D ,  depending on the size of the cell and related to Fick's 
coefficient ~ through 

D= (AI) 2 ~ ~,~ 
2d 

where AI is the length of the cell. 
The usual O'3'9) stochastic description of the chemical reaction as birth 

and death processes and of diffusion as random walk between adjacent cells, 
leads to the multivariate master equation: 

dP 

dt -- Z 
o 

De 
-t- ~Z ~-dZ,. [(x,~ + 1) P(X,~ + 1,X(,+.,~ -- 1)--X,~P]  (1) 
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A V is the volume of one cell, and a denotes the first neighbors of cell r. P is a 
function of the set of variables {X,~}. Only the values of the arguments of P 
which differ from {X~ } are explicitly indicated. 

Denoting by N t the mean total number of particles in the system and 
N = Nt/n the mean number of particles in one cell, we set ~s'% 

and 

Xm 
Xr'~ N 

P({X,~}, t ) =  p({x~}, t) = e -s-uv(lx~l't) (2) 

where the stochastic potential U({x,~},t) is considered as a function of 
continuous variables and S is introduced to normalize p. 

Dividing the two sides of Eq. (1) by NP, expanding the right-hand side 
in terms of l /N, and setting 

we obtain, to zeroth order in l /N, a Hamilton-Jacobi type of equation(8'9): 

CgX( r+ a)a 

This equation may also be written in the following form, which defines the 
Hamlltoman" H: 

-~ d---i- +-gi-+ Ir ~x,~}, ! ~xr~ l = 0 (4) 

We are interested primarily in situations in which a certain reference 
state {~}, corresponding to a uniform steady state solution of the 
phenomenological reaction-diffusion equations, loses its stability and gives 
rise to nonuniform states {~r~}- We expect that in the vicinity of the tran- 
sition the distribution around {.g~} will no longer be Gaussian. <~-4'9) It 
follows that an expansion of U around { ~ } ,  truncated to second-order 
terms, (~~ is not sufficient. Postponing until Section 3 the question of 
consistency we here attempt to determine the terms needed in an expansion 
of U up to fourth order: 
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U({x,~}) = u(lx,o}) + ~ 'c e~u 

1 83U 

AW T ,IOL 1 r 3 Z  8Xrlo, 1 ~Xr2~2 8Xr3~3 ~rlo~ 1 ~r2a~ 2 ~r3oc 3 

+ - -  1 84U 
s ~ 

x r162162162 (Sa) 
with 

~,~ =x ,~  --Xr, ~ (5b) 

Note the absence of first-order terms, owing to the fact that U is extremum 
on the solutions of phenomenological rate equations. In the sequel we also 
discard the constant term U({Y~}), which can always be incorporated in the 
normalization constant. To facilitate the calculations we also introduce the 
shorthand notations 

Xt, ~ ~ X i 

~ /  ~ = U ij 

etc. 

The problem now amounts to finding the equations from which successive 
derivatives U ij, U ijk, U ukt can be determined. To this end one has to expand 
both sides of Eq. (4) in powers of ~i = x i -- xi  and identify coefficients up to 
fourth order. On inspecting the explicit structure of the function H [cf. 
Eqs. (3) and (4)] we see that various powers of ~i are obtained by differen- 
tiating successively H either with respect of {xj} or with respect of {SU/Sxj},  
and evaluating the result at the deterministic values {gj}. We therefore 
introduce the notations 

8 H  82H 
8(SU/Sx~) H~, 8(SU/Sx~) 8 (SU/Sx j )  - H~j, etc. (6a) 

82H 83H 

8x  i 8 (SU/Sx j )  - U~, 8x  i 8x i 8 (SU/Sxk  ) - H~{, etc. (6b) 

Using the explicit form of H one can show the following: 

(i) HJi " evaluated at {xi} is identical to the linearized operator Y 
associated to the deterministic rate equations. 
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(ii) Hi, Hu,  etc. are identical to the expressions of the first, second, 
etc. moments of the transition probability [cf. Eq. (1)] except for the 
combinatorial factor. 

(iii) H~I...i, is the first derivative of the nth transition moment 
(without combinatorial factor) with respect to xj. Similarly /4~1J2 is a ~ i  1 . . , i n 

second derivative, and so forth. 

In what follows, it is understood that all these expressions are to be 
evaluated at the deterministic state {2i}. 

Two quantities for which we need more explicit expressions in 
Sections 4 and 5 are H~ and HI jk, evaluated at a uniform reference state 

Using Eq. (6) and the definition of H, we have 

,~,,s, c5(r - r ' )  . . . .  ' H,,, s,, = 6(r - r ) M s,, (7a) 

,~,'~',"s" f i ( r - r ' ) ( ~ ( r - r " ) 6 ( r  r ' )M~?, / s ' '  (7b) m f l t t O Z  ttt ~ 

where a s '  s a  ' a "  Ms, , ,  Ms,,, are the second and third derivatives of the first 
chemical transition moment: 

o /3 

We are now in a position to write the equations obtained in various 
orders in {~i}. To zeroth order one merely obtains the discretized form of the 
phenomenological reaction-diffusion equations: 

dX,s Z ~ovos I ]  s  + Do 
dt 

Ds 
=-M,s({X,~},2,p,...)+-~d-~,~ [6(r + a - r ' )  - ~(r - r ')]  s ~ (8) 

in which the first chemical transition moment in cell r, M,~ denotes the net 
effect of reactions and 2,/.t,... stand for the parameters controlling the various 
transition phenomena. 

To higher orders in {~;} one obtains the equations for successive 
derivatives of the potential U. Adopting the convention that repeated indices 
are summed over, we obtain 

d 
__ _ _  ~_ ~ [ U i h H  j I d t  Uij i j l  h f  ~- u i h l u J h 2 H h l h 2  (9a) 

d 
__ _ _  u i J  k _ ~ .  s u i j h l { H k  t r k h z r - I  "~ u i h H J h k  U i h l U J h 2 1 4  k dt - -  U k l  \ h i  -~- ~J  L a h l h 2 )  ~- -~- a ~ h l h e [  

+ Uih~UJh2Ukh3Hh~h:h3 (9b) 
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__ d___ uijkl __ - ~Ukl{UUkkl(Hll + mlh2Hh~h2) + uiJhH~, + uiJ<u~h2H~,h ~ 
dt 

+ uiJh'ukh'U1h3Hk,h~h~ + uiJ<uklh~H<h~ 

~- U[hH~[-Ju UlhlUJlZ2H~[lh 2 ~- uih'uJh2ukh3Hl h2h3} 

+ UihlUJh2ukh3ulh4Hhlh2hah4 (9c) 

The symmetrization symbol 5~i j . . . .  applied to a function of the indices i, j ..... 
represents the sum of all distinct terms obtained by permutation of these 
indices. 

3. STOCHASTIC POTENTIAL IN THE VICINITY OF 
A TRANSITION 

For a general reaction-diffusion system, Eqs. (9a)-(9c) constitute a 
complex set of relations. In this section we explore some of the 
simplifications that arise when the system operates in the vicinity of the tran- 
sition point. By definition, in this case the linearized operator f has one 
eigenvalue that goes to zero or a pair of purely imaginary eigenvalues. 
Hereafter we are interested exclusively in real eigenvalues, which charac- 
terize the bifurcation of time-independent (and possibly space-dependent) 
solutions. 

As pointed out in the previous section, the operator H{ evaluated at the 
reference state {2i} is identical to the linearized stability operator. Utilizing 
the explicit form, Eq. (8), of the reaction-diffusion equations, we can write 

- f , ~  \~x,,~,/le~ + - -  6 ~ ,  V' [6(r + a -  r ' ) -  6 ( r -  r ')] (10) 
'~ 2d ~'~ 

From now on, the reference state is chosen to be the uniform steady state 
{Y~}. As a result, (OMJ~x,,~,)~xol becomes independent of r and r '  and will 
be noted M~' J(r -- r '). 

Because of the presence of a space-dependent part, in a system of large 
spatial extension the transition to instability will be marked not only by one 
well-separated eigenvalue going to zero but rather by the accumulation to 
zero of a large number of closely packed eigenvalues. 

For periodic boundary conditions, suitable for describing systems of 
large size, the eigenvectors C m~ of (10) have the following components: 

1 
C ~ , - -  V ~  (c~) : ,e  'r'm (11) 



Stochastic Analysis of Symmetry-Breaking Bifurcations 617 

Note that m plays the role of  a Fourier  variable, whereas a refers to the 
space of chemical concentrations. As usual in Fourier  expansions, a 
normalizing factor 1 / V ~  has been introduced. Thanks  to (11), the eigen- 
values c o _  can be evaluated f rom 

, (c.O  (12) 

In symmetry-breaking instabilities, the vanishing of  one of the eigen- 
values corn, ~ at a transition point will imply conditions on m. We denote by 
m c this critical set. In an infinitely extended system, the critical set is simply 
the sphere I ml = m c = given number.  For m = me, only one eigenvalue 
vanishes at the transition point, which will be denoted by ~o . . . .  . 

Let us now see the repercussions of  the above properties on the 
solutions of  Eqs. (9). All of  these equations except Eq. (9a) for U ij are linear 
and can be solved once U ij is known. The central quanti ty to determine is 
therefore U ~ To evaluate it, we place ourselves on the reference state in 
which case d U ~  = 0. Introducing the inverse matrix Ug ~, we can then 
write Eq. (9a) as 

~9~o{H~U~ I } = --Hij  (13) 

In the representation which diagonalizes the linear stability operator  f 
( f ~ - - H ~ ) ,  we can further simplify (13) to 

(co i + ogj) Cu~  ~ = - C  Hij (14) 

where Cu-1,  cH are the t ransforms of U -1, H in the eigenspace of f .  Note 
that the index i is now an abbreviation for (ma)  rather than (ra) as before. 

We see clearly that in a transition point, o3 i = 0, U is not invertible. On 
the other hand, Eq. (14) allows us to relate its eigenvectors Qi and eigen- 
values e i to those o f f .  In fact, in most  cases we will only need to establish 
this connection for values of  i such that co i is close to the critical eigenvalue 
a~ic= 0. Denoting by i 0 this set, we obtain, to dominate  order, after some 
algebra 

eio ~ --2 (Di~ 
Ic (15a) 

Qio ~.~ Cio 

in which l c is a constant defined by 

CHm~,~m,,~c = ~(m c + m~') l c (15b) 

and whose value is model dependent. 
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In view of the intimate connection between U ;J and S ,  it is now natural 
to express the stochastic potential Eq. (5a) in a representation diagonalizing 
U u. Defining the transformed variables 

1 
~i Q- lh~  (16) 

we obtain 

where 0 uk = V ~  ~ ~ijk~ = n ~ QU ~jk, QU i:k~ being the transforms of 
U tJk, U ukl in the new representation. 

By its definition, Eq. (2), U must be proportional to the total number of 
cells n. This is achieved in Eq. (17) through the factor n multiplying the 
square bracket. 

Let us now come to the orders of magnitude in terms of the system's 
parameters, particularly those controlling the distance from the bifurcation 
point and the limit point (cf. Fig. 1). We first recall that if all e~'s are finite 
and positive, there is no need to go further than the quadratic terms in 
Eq. (17), and the amplitude of ~ can be limited to the order of 1/,~/n for the 
corresponding states to have a nonnegligible probability. But when one of 
e~'s becomes small, e i =  e;0, the corresponding critical mode ~0 cannot be 
described adequately unless higher-order terms are included. Comparing first 
quadratic and quartic terms we see that for finite 0 uk~, they are comparable 
if lei01 ~ I{I z, which defines a small neighborhood of the bifurcation point 
e~c = 0 or 2 = 2 c. Coming next to the cubic terms, knowing from the above 
argument that I~i01 ~ leiol 1/2, we see that one way that these terms can be 
comparable to the quadratic and quartic ones is 

I U'oJo*o[ ~ le,ol,/~ (18a) 

Inasmuch as ie,0l ~/2 itself is of the order of ( 2 - 2 c )  b, b being in general 
smaller than or equal to 1, we conclude that there must be a second 
parameter p, in the problem, controlling the magnitude of 0 i~176176 through 

I g~oJokol ~ o(,u) 
(18b) 

u - ( 2  - ; t~)  b 

The only other way cubic terms can influence the stochastic potential is 
through the presence of one noncritical mode: 

ui~176176 ~Jo ~k (18C) 

provided that 0 i~176 is of O(1) and ~k of O(le~0t) for k ~ k o. 
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Summarizing, we can write the following stochastic potential which is 
consistent with all requirements of perturbation theory: 

U,oio~r ~ ~ + 3 ~ ~,oVo~/ 
ioJok~ko 

+ ~ -  Z ~o Jo ~o ,oj 
'oJokolo 

(19a) 

Before we proceed to the evaluation of the different coefficients 
appearing in Eq. (19a) it will be useful to write the potential in a form 
exhibiting separately the contributions from the critical modes and those 
containing at least one non-critical mode: 

(1 E 1-- Z 
u = n 5 -  ,o e'~176 + U~~176176176176 

6 ioJoko 

ioJokolo 

+ n 5-  ei~i~* + Z u'J~176 
o (i~'o),Joko 

(19b) 

By slightly transforming the second bracket we further obtain 

[ 1  /~ ~ , 1 - . .  
U = n -~- eio~'~ 21- T Z Ut~176176 

ioJoko 

+ ~ -  ~ U '~176176176 - 3 ~ U i~176 - -  U o o] ~io~Jo~ko~,o 
ioJoko'o h r o Ch / 

i g: io ko , o 
(19c) 

The probability associated to this potential is the product of a 
multivariate Gaussian distribution with respect to the noncritical modes, 
centered in 

--1 
~ ~ko %1o 

ko'o 
(20) 
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and of a distribution restricted to the critical modes only: P oc e -NUcr with 

[1  .~0 , 1 - .  Ucr : n -~- eio~io~io + ~- ~ U~OS~176 
ioJoko 

+ o o ,oo (21) 

This provides the justification of the "adiabatic elimination" of the 
noncritical modes used in Ref. 6. 

4. EVALUATION OF THE COEFFICIENTS OF CUBIC AND 
QUARTIC TERMS 

Our next step is to evaluate the coefficients 0 i~176176 ~-ioJok and 0 i~176176176 
using Eqs. (9b) and (9c) in which U iJ is given by Eq. (14). As before, we will 
carry out this calculation using the homogeneous stationary solution as 
reference state. This will allow us to limit ourselves to the time-independent 
solutions of (9b) and (9c). To simplify as much as possible the rather heavy 
initial expressions, we shall take advantage of the parameter dependence of 
the various quantities, as discussed in the preceding section. 

4.1. Cubic Terms 

Utilizing Eq. (9a) at its steady state and switching as before to the 
representation diagonalizing U iJ we obtain 

I I 5~t]k e g r  Qg~]k = ~ j k { e t  QHj'k Q k " - -  --r +eiej HD+eiefikQH~7~} (22a) 
t Ch 

where the index i has the same a part as i but an opposite Fourier variable 
fil = - m  (rood 2~). 

When all i, j are close to the critical set ( i=  i 0, j =  J0) the last two 
terms of this equation become negligible. Moreover, if k 4: k 0, only one of 
the terms coming from the symmetrization operator is nonnegligible. We 
thus obtain 

~ o U~ioJo = OH~OJo (22b) 
8h 

It can be verified that even if k = ko, Eq. (22a) admits a solution of the 
form given by Eq. (22b). Because of the linearity in OuhJk, this must be the 
only solution. From now on therefore we can extend Eq. (22b) to k = k o as 
well. 
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To solve for ~176176 one has to invert the operator (QH~/ch). As OHkh is 
related to H~ by a similarity transformation, it has the same eigenvalues % 
as the linearized stability operator S (S~=H~) .  It therefore becomes 
singular in the vicinity of bifurcation. In this case, however, eh vanishes as 
co h [cf. Eq. (15a)]. As a result, the operator (QH~/eh) is always invertible. 
The solution of Eq. (22b) is thus 

QUi~176 ~k (Q~" C~) CHih~176 (22c) 
o~ h 

where CH~~176 is now expressed in the eigenspace of the linearized stability 
operator. 

To obtain more explicit expressions, one has to invoke definitions (7) 
and subsequent remarks made in Section 2. This yields 

Vmoa cmoacm ce = V/-n oU,%,,cmo,~c=",~ 

(q m,,) a "  (e m,,) 3 
- 6 ( m  o + m 0 + m " )  _ _  t C m"a 

(~ m"3 

(c-1~31M3233( '~ ~act',, ~ac 
X ~, m")3 B1 tt'm0-t32kt'm~233 (23a) 

where (em) 3 has been defined in Eq. (11) and (q~)'* is introduced in a similar 
way through the equation 

1 
r m l  Q,,~"E,- V~ ~ (q,,,)~,e ira" (23b) 

An additional simplification is achieved when m . . . . .  - m o and a = a c. 
Using Eq. (15a) relating emo~c and Qm0,,c to the properties of the linearized 
stability operator we obtain 

2 (c_1]31 A,t3:33{ c ~c(.. ~ac 
ic ,. m~/ac~,~31 t, m0232k~-m~)33 

x ~(m0 + m~ + m0') (23c) 

Note that when m" = m o" and a 4: ae, the divergent component obtained for 
fl = a c in the sum (23a), vanishes because of the orthogonality of (q.~)~ and 
(Cm~;) ~c [cf. Eq. (15a)]. 

On the other hand, the factor multiplying the Kronecker delta in (23c), 
is a scalar since the eigenvectors (Cm0)~ are independent of m 0 at the bifur- 
cation point. It represents the projection of the second derivative of the first 
chemical moments M~ '~'' on these eigenvectors. It is through this latter 
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quantity that the second smallness parameter It present in our problem- 
[cf. Eq. (18b)] is introduced. Explicit expressions are given in the next 
section devoted to the trimolecular model. 

4.2. Quartic Terms 

Utilizing Eqs. (9a) and (9b) at their steady state, switching to the 
representation diagonalizing U 'j and neglecting terms of higher order, both in 
/~ and in the deviation )~-  2 c from the bifurcation point, we obtain from (9c) 
an equation of the same form as (22b) which can be solved by inverting the 
operator ~H~/e h. If use is made of the expressions for Q U i~176 deduced in the 
first part of the present section, the coefficient of the quartic terms of the 
critical potential Uc~ [Eq. (21)] takes the following form: 

- '  1 - t ' n  1Un~~176 U ~~176176176 - ~9~ioJokot o ~n;~ U oJo __ 
heho ~h 

l (Qr0. c h) 
=   jo o,o=  o o o,o 

• (CH{~176176 N ~ CH{~ 1 CH~~176 (24) 
h,.'--n~ cob, 

This expression can be simplified by noting that the only nonvanishing 
contribution is for h = i o [see also discussion following Eqs. (23)]. Utilizing 
Eqs. (15) and (7) we thus obtain 

2 I ' - - r ' / 3 I  =__/T~,~m0m~m~, ~ ' - -  ~ 6 ( m + m 0 + m ~ , ) F m / 3  1 
m13 :/: mOac (D m/3 

• 6(m 0 + m; + m~' + m~") (25a) 

We have introduced one scalar quantity ?' and two vectorial quantities F r 
Fro/3, which represent projections of second and third derivatives of the first 
chemical transition moment on the eigenvectors (c=) ~. They are similar to 
the scalar defined in the discussion following Eq. (23c), and which will be 
denoted by y. The explicit expressions of these quantities are 

. -1",/31 M/32/33(C "~ac( C ~ac 
~1 ~ - [ C m c ) a  c /31 k mc)/32k mc)/33 

~/ (C I'~1 M/32/33/~4t'C $acfc  "~ac( C "~ac 
~ - \  mc/~ /31 \ mc),~2\ t11c1/33\ mc)/34 (25b) 

/111/3 " -- 1"-/31 M/32/33(.. "~ac( C "~/3 
= [Cme)~c /31 \r In)53 
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5. APPLICATION TO THE BRUSSELATOR M O D E L  

In this section we analyze a specific example, corresponding to the 
following reaction schemer1): 

kl 
A >X 

2 X + Y  1,~ ,3X 

k3 
B + X  ~ Y + D  

k4 
X , E  

A is kept in excess, D and E are instantly removed, whereas X, Y are the 
two variable intermediates. The kinetic coefficients characterizing the 
chemical reactions are given in Table I, where use has been made of the 
standard change of variables incorporating most of kos in suitable 
redefinitions of X, Y, A, B, and time scale. 

The reference state used is the well-known uniform steady state 
solution: 

X l ~ a  

b 
")~2 z - -  

a 

In order to express the stochastic potential in the form given by Eq. (21) 
we have to evaluate (i)the eigenvalues and eigenvectors of the linearized 
stability operator S~ ,  (ii)the eigenvalues and eigenvectors of U ii, and 
(iii) the appropriate projections on the eigenvectors of d ~  of the derivatives 
of the first chemical transition moment, i.e., y, Fro% F,~ ,  7" 

For periodic boundary conditions, the eigenvectors of S i are given by 
Eq. (11), where (era) ~ obeys Eq. (12). The latter takes the following matrix 
form for the trimolecular model: 

( b - I - K = D , - - ~ = ~  a2 ) ((Cm)~] = 0  (26a) 
- b  - a  2 _ KIND2 __ r m,~ (C,~) ~ / 

Table I 

p vo~ vo2 v-p~ v-o2 /~p 

1 1 0 0 0 a 
2 1 --1 2 1 1 
3 --1 1 1 0 b 
4 -1 0 1 0 1 
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where we have set 

1 e l m  �9 a) 
K= = 2d ~ (1 - (26b) 

II  

The eigenvalues co=l and co.2 are the solutions of the solvability 
condition of the homogeneous system (26a) expressed by the characteristic 
equation. The bifurcation is marked by the vanishing of the largest of them, 
say, co=el" In a large system for which the spectrum of these eigenvalues is 
quasicontinuous, come1 obeys both the characteristic equation of (26a) and a 
relation expressing that w=x is a maximum for m = m~: 

(b - 1 - K = D  l - co=O(-a / - K I n D  2 - coral ) + aZb = 0 (27a) 

D l (  - a 2  - -  K = D 2  - -  collal) "~- D 2 ( b  - 1 - -  K I n D  1 - -  coral) = 0 (27b) 

At the bifurcation point, Eqs. (27a,b) admit the solution co=el = 0 ,  
which implies 

( D_b_~, )1/~ b~ = (1 + at/) 2 with r /=  (28a) 

a 

K ~ - -  (D1D2)U2  = K~ (28b) 

From Eqs. (28a,b) we easily deduce the dominant order of the 
normalized eigenvectors (e=) ~c and then evaluate the scalars l~, y, y', defined 
in Eqs. (15b, 25b). We find 

4(1 + at/) 
lc= a(1 --~--~ [a 2 + r/2(1 + at/) 2] (29a) 

2(1 -- at/) 
Y -- (1 - r/2)[a 2 + */2(1 + ar/)2] 1/2 (29b) 

6at/ 
y' = (29c) 

( 1  - r/:)[a 2 + r/2(1 + at/) 2] 

The results (28a) and (29b) allow us to choose the following small 
parameters which control both the deviation from the bifurcation point and 
the distance between simultaneously stable branches: 

2 - )-c = b - b c 

/ J= 1 - a t /  
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Moreover, the vectorial quantity F ~  appearing in the expression (25a) 
f o r  --ioJok~176 Ucr can be shown to display the parameter/~ as a multiplying factor. 
We find more explicitly 

2a(1 + at/) [(c~')~ - -  ( C ~ n l ) ~ ]  
-Fm~ = (1 -- at~) aZ + t/2( 1 + at/) 2 (30) 

As a result, for this model, the second term of the curly bracket in the 
expression (25a) is negligible to our order of approximation. The coefficients 
of the cubic and quartic terms of the expansion (21) reduce therefore, respec- 
tively, to (--2y//~) d(m 0 + m/j + m~') and (-2~'//~) 6(m 0 + m/~ + m~' + m~'). 

We now have to evaluate the coefficients of quadratic terms et0, which 
are given, to dominant order, by Eq. (15a). More specifically, the pertur- 
bative method relating the eigenvalues of U~ 1 and f gives the following 
result: 

2 
emo.c -- in, ~ o9,.o,~ + O ( e ~ o ~  ) (3 la) 

with 

lmo = (e~)~(e~)~[M~: + 2.~,(M~ -- ogmo,, 6~,~:)] (3 lb) 

Note that era0,, c depends then on the various parameters 2,/2 .... as well as on 
m 0, the latter dependence entering through Km0. When 2 approaches 2c, all 
the eigenvalues em0,*c become small inasmuch as the various values of K,, ~ 
are close together (and close to Kr In the general case, the K., ~ dependence 
of co.,0, c and (e.0)'~c can be expressed with the help of a perturbative 
technique. For a given model as the Brusselator, we can expand co.,0~c and 
l.0 in Taylor series in terms of the two variables b-br and Kmo-Kr 
assuming that Kin0 is continuous for a large system. Because of the definition 
of be and Kc, the dominant terms in the expansions of o9.,0, c and em0~ c are of 
order ( b -  be) and (K,, ~ - K  C) z. Moreover, in order to determine the wave 
vector (orK.o)  which gives to ~o~0~c or emote its extremum value, for 
conditions which are slightly different from critical ones ( b -  be 4: 0), we 
keep in these expansions the terms of order (b-br We thus 
obtain 

0.) m oa~ c - -  

1 [ at/(1 -- t/2) _ 2t/2 
(1 + at/)(1 - r/2) Lb -- b c + (1 + at/)(1 -- t/z) 

X(b_bc) K 'o-Kc  (Kmo-Kc) 2] 
Kr at~ \ Kr (32a) 

822/37/5 :6-9  
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a(1 _ t /z )  
e ~ ~  2(1 + ar/)Z[a 2 + r/z(1 +at / )  2] 

b - b  c + 
2t/Z[a z + (1 + at~) z] 

(1 - r/2)(1 + ar/)[a 2 + t/2(1 + at/) 2] 

• (b_b~)K=o_K~ ( .K .o_Kc~ 2] (32b) 
K~ a t / \  K~ / J 

Summarizing, for small values of the parameters ( b -  be) and (1 - a t / ) ,  
the stochastic potential of the trimolecular model takes the following form, 
restricted to the critical mode contribution: 

n l  0 

3l~ m0 ,0m,, ~ 

Y' ,, ) 
121 c ~-" ~ 6(m~ + m~ + m~ + m~ ) ~m~176176176 

,, 0.~o.,-0m'~ ' 
(33) 

where lc, ?, y' are given by (29) and em0~c by (32b). 
The transformed variables ~,.0~ = {m01, defined in Eq. (16), can be 

easily expressed in terms of the discrete Fourier transforms of the initial 
variables: ~=~ = ( 1 / , ~ )  Erexp(im �9 r) ~,~. Using Eqs. (11), (15a), (16), we 
obtain, for the trimolecular model, 

1 [a2 + t/2(1 +at/)2] 1/2 ~m01 
a 

1 [a2+rlz(1 +arl)2] ~/z 
= ~ -  (1 + at/) ~m.2 (34) 

The stochastic potential (33) has thus the same structure as the 
Brazovskii potential obtained by Walgraef eta/., (6) at the dominant order in 
(b - be) and (1 - at/). In fact, if one requires complete identity of the results 
to that order, one has a way to compute the strength of the random force, 
F L, which is added to the phenomenological equations in Ref. 6, and which 
is assumed to obey a fluctuation-dissapation theorem. The result is 

2r/2 (1 + at/) (35) 
rL=-- d- 
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Having reduced the probability distribution to the exponential of a 
Brazovskii-type potential, one may apply the techniques of critical 
phenomena to evaluate the deviations from the mean-field theory arising 
from the fluctuations, particularly in two dimensions. We refer to 
Walgraefet al. ~6) for a discussion of this point. 

Note that in the Brazovskii potential given in Ref. 6, certain wave- 
vector-dependent terms have been retained in the quartic terms by 
Walgraef et al. Within the framework of a perturbative approach, these terms 
are proportional to the small parameter (1 - at/) and must then be neglected 
in order to preserve the consistency of the expansion procedure. It is 
worthwhile to note however that in the general case, the coefficients of the 
quartic terms of our expansion may well contain a wave-vector-dependent 
part [see Eq. (25a)]. For the trimolecular model, this part, of order (1 - at/), 
is identical to the wave-vector-dependent term obtained in Ref. 6. 

Note finally that we have retained in the expression (32b) of the coef- 
ficient of the quadratic component of U, terms of order (b - bc)(Kmo - Ke) 
which are small compared to those of order ( b - b e )  and ought to be 
neglected in a perturbative approach. However, these terms introduce a new 
qualitative effect as they allow us to determine, to the first order in (b - b e ) ,  
the value K 0 of K=0 which gives to e,,0~c its smallest value. From Eq. (32b) 
we find 

K o : K e  (1 q r/ a2 + (1 +at/)2 ( b - b e ) )  (36) 
a (1 -- r/2)(1 + ar/)[a 2 + r/2(1 + at/) 2 ] 

The corresponding modes are expected to play the dominant role in the 
description of the spatial structures arising through bifurcation. We see that 
K 0 increases with respect to K e for b > b e, and decreases for b < be. Alter- 
natively, the wavelength of the structure decreases or increases according to 
whether one is, respectively, above or below the bifurcation point. Now, in a 
variety of systems ranging from B6nard instability to crystal growth, ~12) an 
increase of wavelength is observed. Our result is compatible with such a 
tendency if the dominant structure (in the sense of the most probable state) 
first arises in the subcritical region. We have therefore the beginning of an 
answer to mode selection. It should be realized however that, strictly 
speaking, Eq. (36) is beyond the validity of the perturbative approach 
utilized throughout our paper. 

6. D I S C U S S I O N  

We believe that the results obtained in the present paper provide new 
insights on two problems of interest in the study of nonequilibrium 
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phenomena: the connection between deterministic (Brazovskii) and 
stochastic potentials associated with symmetry-breaking bifurcations and the 
behavior of fluctuations near the confluence of two different singularities. 

We have shown that in a general reaction-diffusion system, a stochastic 
potential restricted to the critical modes can be derived. In this respect, 
therefore, the Brazovskii potential is recovered. It is to be noted however 
that, in general, the coefficient of the quartic term depends on the noncritical 
wave vectors. Interestingly, in the Brusselator model this contribution is 
small near the coalescence of the bifurcation and the limit points (). ~ '~c, 

~ 0). It would be important to extend these results to models involving 
more than two variables as well as to other symmetry-breaking transitions, 
particularly those leading to time-periodic inhomogeneous solutions. 

Throughout the analysis we have insisted on the importance of ensuring 
consistency between the terms kept in the stochastic potential on the one 
side, and the parameters controlling the transitions occurring in the deter- 
ministic equations of evolution on the other side. We have seen that the use 
of the bifurcation parameter alone was not sufficient to achieve this purpose. 
We therefore concluded that it was necessary to study the behavior of fluc- 
tuations in the nearly degenerate situation in which the singularity associated 
with the bifurcation point was close to that associated with the limit point. In 
this way the range of validity of the stochastic potential could be determined 
unambiguously. We believe that a similar procedure should apply to the 
study of the stochastic aspects of higher codimension bifurcations, which 
attracted considerable attention recently. ~a3) 
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